

Spectral Forest Final Testing Results ME 486C Section 01

Team: Tyler Lerew, Torrey King, & Derrick Doan

Design Requirements (DR) Summary

- Customer Requirements (CR)
 - Durable (CR1)
 - Semi-constant internal conditions (CR2)
 - Ease of access (CR3)
 - Environmentally sound (CR4)
 - Spectral range between 400-1000nm (CR5)
 - As light as possible (CR6)
 - As small as possible (CR7)
 - Drone mountable in operation (CR8)
 - Ambient operating range of 0-50°C (CR9)

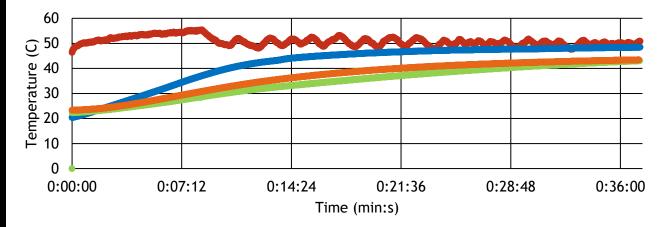
- Engineering Requirements (ER)
 - Long lifespan (ER1)
 - Internal temperature control with vents (ER2)
 - Easy to access data in EE side (ER3)
 - ► Water and dust proof (ER4)
 - Optics designed for full range (ER5)
 - Drone can fly while carrying (ER6)
 - Fits within drone payload space (ER7)
 - Optics secured (ER8)

Top Level Testing Summary

Experiment/Test	Relevant DRs	Testing Equipment Needed	Other Resources		
EXP 1: 3D Print Fits	 CR3 - Ease of access CR6 - As light as possible ER8 - Optics secured during flight 	• Bambu Lab X1 Carbon printer	 Lab space Multiple tolerance tests at once 		
EXP 2: Laser Alignment	 CR5 -Spectral range between 400- 1000nm CR8 - Drone mountable in operation CR9 - Ambient operating range of 0-50°C ER1 - Long lifespan ER5 - Optics designed for full range ER8 - Optics secured during flight 	 3D printed alignment jig Laser Optic layout 	• Dark Environment		

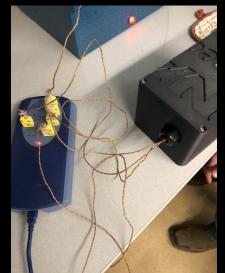
Top Level Testing Summary cont.

Experiment/Test	Relevant DRs	Testing Equipment Needed	Other Resources			
EXP 3: Heat Test on Optics	 CR1 - Durable CR2 -Semi-constant internal conditions CR4 - Environmentally Sound ER1 - Long Lifespan ER2 - Internal temperature control with vents 	 Optics chamber w/ door and screws 1 Mount Detector Chip 3 - 1" pieces of foam 4 K-Type Thermocouples Pico Data Logger Epoxy 	 Lab 111 PC to connect to and will collect all the data 			
EXP 4: Flight/drop for optics	 CR1 - Durable CR4 - Environmentally Sound CR6 - As Light as Possible CR7 - As Small as Possible ER1 - Long lifespan ER3 - Easy to access data in EE side ER8 - Optics secured during flight 	 Fully assembled encloser (burner lenses in-place of real ones) Range Finder Screwdriver to open the device and inspect for damage Extra screws 	 Knoles/ San Fran parking garage 			

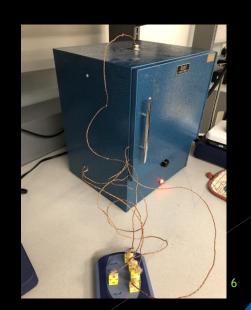

Top Level Testing Summary cont.

Experiment/Test	Relevant DRs	Testing Equipment Needed	Other Resources		
EXP 5: Seal/vent test upon submersion and Artificial Dust Storm	 CR2 -Semi-constant internal conditions CR4 - Environmentally Sound ER2 - Internal temperature control with vents ER4 - Water and dust proof 	 Fully assembled device Vessle larger than the device DeWalt Electric Cordless Leaf Blower Paper Food Dye Timer 	 Open area Water Sand 		
EXP 6: Destructive Test on Enclosure	 CR1 - Durable CR4 - Environmentally Sound CR6 - As Light as Possible CR7 - As Small as Possible ER1 - Long lifespan ER4 - Water and dust proof ER8 - Optics secured during flight 	 Fully assembled device Range finder Means to record the fall 	 Knoles/ San Fran parking garage Rocks Trees 		

Temperature of Internal Components at Maximum Operation Range vs. Time



- DRs being tested: CR1, CR2, CR4, ER1, ER2
- Experimental test setup and results:



• Ambient Temp (C) • Internal Ambient Temp (C) • Mount Surface Temp (C) • Chip Surface Temp (C)

Heat Test on Optics Cont.: Completed

Table 1: Linear expansion

Location	With same q as mount (in)	With assumed surface temp (in)
Diff of nylon to entrance	0.0342	0.0000959
Diff of nylon to focus	0.0338	0.0000466
Diff of nylon to grating	0.0339	0.0000232

Seal/vent test upon submersion and Artificial Dust Storm: Completed

►DRs being tested: CR2, CR4, ER2, ER4

► Water submersion test: full submersion, ingress after 10 second, beyond what is required

Ingress testing cont.: Completed

Ingress testing cont.: Completed

Flight/drop for optics: Completed

- DRs being tested: CR1, CR4, CR6, CR7, ER 1, ER4, ER8
- Test consisted of knocking off table, dropping from shoulder height, and dropping from roughly 20ft

Flight/drop for optics cont.: Completed

Flight/drop for optics cont.: Completed

Destructive Test on Enclosure: Completed

- DRs being tested: CR1, CR4, CR6, CR7, ER 1, ER4, ER8
- Done without any optics or mounts in the enclosure (taped a similarly weighted rock in place)
- Dropped from the top of the San Francisco parking garage, then tossed into a tree, then tossed onto cement multiple times

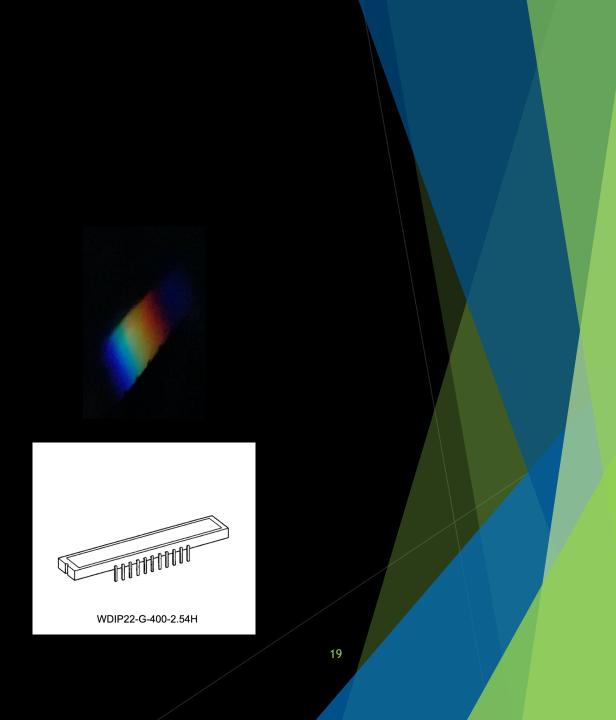
Destructive Test on Enclosure cont.: Completed

Destructive Test on Enclosure cont.: Completed

Destructive Test on Enclosure cont.: Completed

Laser Alignment: Completed

- DRs being tested: CR5, CR8, CR9, ER1, ER5, ER8
- 4.5 mW (639 nm) laser mounted to be centered on the optic system (class 3R)
- Paper represents the CCD chip placement
- Can see odd reflections (need for matte black paint)
- Can see degrees of incidences in the laser diffraction



Laser Alignment cont.: Completed

- Estimated image while looking up at a ponderosa pine
- This rainbow shows the visible wavelength being roughly 0.5 in which is 55% of total chip length, perfect
- Width of this light is slightly wider than the CCD chip detector width, great!
- This goes to show our theory design in fact does work in practice, will know more once we have use of EE board
- Expecting laser to reach the correct location and it did!

3D Print Fits: Completed

DRs being tested: CR3, CR6, ER8 (Ease, light, small)

We put stuff in.

Yay.

lt fits.

Spectrum Tube Color Adjust still will not be doing

- Will not be performing this semester due to the EE team not completing their portion as this is to assist them in calibrating their data.
 - This test will use spectrum tubes (gas filled tubes) to get exact data points of where each wavelength hits the CCD chip

total test count

Total Tests Completed:

6/6 = 100%

Specification Sheet: Customer Requirements

Customer Requirement	CR Met	Client Acceptable
CR1 - Durable	\checkmark	\checkmark
CR2 - Semi-constant internal conditions	\checkmark	\checkmark
CR3 - Ease of access	\checkmark	\checkmark
CR4 - Environmentally sound	\checkmark	\checkmark
CR5 -Spectral range between 400-1000nm	\checkmark	\checkmark
CR6 - As light as possible	\checkmark	\checkmark
CR7 - As small as possible	\checkmark	\checkmark
CR8 - Drone mountable in operation	\checkmark	\checkmark
CR9 - Ambient operating range of 0-50°C	\checkmark	\checkmark

Specification Sheet: Engineering Requirements

Engineering Requirement	Target	Tolerance	Measured/Calculated Value	ER Met?	Client Acceptable
ER1 - Long lifespan	5 years	± A few months	PC has a life of 10-20 years, everything else can be replaced/re-aligned	\checkmark	\checkmark
ER2 - Internal temperature control with vents	0-50 ℃	± 5℃	Ambient = 50C, Internal Ambient = 48.26 C	\checkmark	~
ER3 - Easy to access data	<5 sec	0 sec	Just plugs in, USB (needs 3 tries to get correct orientation)	\checkmark	\checkmark
ER4 - Water and dust proof	0 ml/ 0 mg	±0.01 ml/ 0.01 mg	Ingress after 10 sec of full submersion	\checkmark	~
ER5 - Optics designed for full range	400-1000 nm	± 0 nm	Based on Zemax Calculations, 400- 1000nm fit within the CCD chip space	\checkmark	\checkmark
ER6 -Drone can fly while carrying	<2 lbs	+1lb	2lb 7oz	\checkmark	\checkmark
ER7 -Fits within drone payload space	10in*10in*5i n	+ 0.5in	9.976in*8.238in*4.5in	\checkmark	\checkmark
ER8 - Optics secured	0 in of movement	0 in	Per greater than 5 ft drop, it moves. Will fix upon next iteration	\checkmark	~

Link between ERs and CRs

- Engineering Requirements (ER)
 - Long lifespan (ER1)
 - Internal temperature control with vents (ER2)
 - Easy to access data in EE side (ER3)
 - Water and dust proof (ER4)
 - Optics designed for full range (ER5)
 - Drone can fly while carrying (ER6)
 - Fits within drone payload space (ER7)
 - Optics secured (ER8)

- Customer Requirements (CR)
 - Durable (CR1),
 - Semi-constant internal conditions (CR2),
 - Ease of access (CR3),
 - Environmentally sound (CR4),
 - Spectral range between 400-1000nm (CR5),
 - As light as possible (CR6)
 - As small as possible (CR7),
 - Drone mountable in operation (CR8)
 - Ambient operating range of 0-50°C (CR9)

QFD

						1						-		
	System QFD			Project:		Spectral F	orest							
	• –			Date:		Spring 202	4							
				_					ion Legend					
1	Long Lifespan		++		_			++	Strong po					
2	Easy to access data in EE side Water and Dust Proof			++				+	Moderate j Moderate r					
3 4	Optics Designed for Full Range		+		++	++		-	Strong ne					
4 5	Drone can fly while carrying		-		+	++	++		Strong ne	gauve				
6	Fit within drone payload space		-	+		+	+	++						
7	Optics Secured During Flight		+	-	+	-	+	+	++					
8	Internal Temperature Control with V	ents	+		+	-	-	-	-	++				
U		CH ()												
						Techni	ical Requi	rements				•		
										nts				
										Internal Temperature Control with Vents				
										ith				
				0		e		e		l w				
				side		ang	ß	pac	ght	tr.o				
				E		I R	ryi	ls p	Flig	Con				
				пF	of	E	car	loa	Bg	e (
				ta i	1.0	5	le (ay	i. II	tu				
				dai	st F	d f	whi	le p	<u>e</u>	era				
			an	ess	Dus	gne	ly 1	1.01	red	du				
			fest	acc	pu	esi	un 1	n d	ecu	Te				
			Li	te te	r a		e ci	ithi	s. S	nal				
		Customer	Long Lifespan	Easy to access data in EE side	Water and Dust Proof	Optics Designed for Full Range	Drone can fly while carrying	Fit within drone payload space	Optics Secured During Flight	ter				
	Customer Needs	Weights			-	ō	DI	E	-	In				
1	Durable	4.5	9	2	5				8					
2	Semi-constant internal conditions	3.5		-	6			-		8				
3	Ease of access	4		9	4			5		-				
4	Environmentally Sound	5			9			-	6	7				
5	Spectral Range Between 400-1000nm	5 4.5			5	9	9	2	6	3				
6 7	As Light as Possible As Small as Possible	4.5				2	9	9						
8	Drone Mountable in Operation	4.5 3.5				2	8	8	9					
9	Ambient operating range of 0-50 °C	3.5			7		0	0	,	9				
,	Amorene operating range of 0-50 °C	5.5		time in	/					,		1		
	Technical Require	ement Units		sec (to				ins*ins*i						
	2 conneur require		years	enter)	mL	nm	lbs	ns	Hertz	°C				
	Technical Requirem	ent Targets	5	<60	0	400-1000	<2	<331	+/- 50	0-50				
	Absolute Technical		40.5	45	154	54	68.5	98.5	97.5	109.5				
											27			
	Relative Technical	Importance	8	7	1	6	5	3	4	2	26			
				1	1	U	J	3	4	4				

Thank you!

Questions?